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Attention is  focused on the dynamic buckling of imperf'ection- 

sensitive models subjected t o  loading histories characterized by a 

finite length of ttme of load application. 

which show that for  all but highly imperfect structures the f i n i t e  

time buckling impulse can be considenibly less  than the zerwtime 

buckling impulse. The +cation of the results o b t m d  from the 

models t o  actual fmperfection-sensitive structures is discussed and 

zesul%s are obtaLned -wMch suggest what would setxi t o  be cozsemative 

buckling estimates f o r  a long cylindrical shell loaded i n  axiaf 

Results are presented 

compression and having sufficiently strong end restraints. 
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DYNAKIC BUCKLING ESTIMATgS* ' 

John W. Hutchinson and Bernard Budiansky - 
Harvard University, Cambridge, Masoachusetts 

SA-3 

INTRODUCTION 

The bucklirrg of imperfection-sensitive structures such as cylindrical 

shells under axial compression and spherical shells subject to uniform 

pressure has been studied intensively in recent years. 

buckling of such structures is fairly well understood, a clear understanding 

of dynamic buckling is lacking. 

any general guidelines for design against dynamic buckling. 

paper continues the study initiated in Reference (1) with a view toward 

presenting a complete picture of the dynamic buckling of some imperfection- 

sensitive models. 

models, and real structures as well, subjected to step loadings, i.e., loads 

suddenly applied and subsequently held constant. 

extended to loading histories characterized by a finite length of time of load 

application. 

application of these results to actual imperfsction-sensitive structures is 

discussed and attention is focused on the cylindrical shell under axial 

compression. 

While the static 

Ertisting analyses, BS yet, hardly provide 

The present 

That initial study was concerned with buckling of the 

Here consideration is 

In addition to the presentation of results for the models, the 

SIMPLE MODELS: STATIC BUCKLING 

The imperfection-sensitive model shown in Figure 1 is a modified version 

of that employed by Kannan, DUM and Tsien2 in their early study of cylinder 

- - - - - - - - - - - - - - - - - - -  
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buckling. The three-hinge, rigid-rod model is laterally constrained by a 

non-linear softening spring, and a mass M 

joining the two rods. 

is concentrated at the hinge 

The initial imperfection is identified with the 

deviation of the unloaded structure from the straight configuration. 

variations of the basic structure are investigated. 

Two 

The force of the 

constraining spring of the quadratic model is given by 

2 

F kLk - 
L- J 

where x is the lateral displacement. (Note that the total displacement is 
- 

then x + I , where the initial imperfection is x .) The spring force of 

the cubic model is expressed as 

The equation of dynamic equilibrium for the quadratic model is 

and for the cubic -del is 

- z + (1’A/Xc)Z - 5 23 - n/xc (2) 

where e = x/G , 
w = (k/M)1/2 

= G/L , - S(:/L)’ , and (.) 5 $& where 
is the vibration frequency of the unloaded structure. The 

static buckling load of the perfect column, the classical buckling load, is 

xc = kL/2 . 
The static buckling load of the imperfect structure is defined to be the 

maximum value obtained by the applied load and i s  denoted by 

static load-deflection curve for the quadratic model is shown in Figure 2(a). 

The maximum value of A is obtained when - =  0 , and this condition used 
in conjunction with Equation (1) (with 

As . The 

dX 
dz 

z = 0 ) yields 
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Only f o r  5 0 w i l l  there  be a rea l  value of A S  t ha t  s a t i s f i e s  (3); fo r  

5 < 0 
- 

there is no s ta t ic  buckling load. 

Figure 2(b) displays the static load-deflection curve f o r  the  cubic 

model. A maximum value of X occurs only i f  8 > 0 -- the  condition f o r  

the  model t o  exhibi t  imperfection-sensitivity. 

the  cubic model s a t i s f i e s  

The static buckling load of 

DYNAMIC BUCKLING OF MODELS 

Two classes of loading his tor ies  w i l l  be considered i n  t h i s  paper. 

B e c t m u l a r  load- (Figure 3(a)) is characterized by 

applied load, and T , the  length of time of load application. A par t icu lar  

t r iannular  loading (Figure 3(b)) is specified by X o  , the  i n i t i a l ,  and thus 

peak, value of the applied load and The dynamic response of either of 

the  two models is such that (for a fixed value of T ) f o r  Ao less than a 

cer ta in  value, c a l l  i t  X the response is  bounded, while it is unbounded 

f o r  X o  greater  than AD . Thus, AD 
dpnamic buckling load f o r  the  models. 

response is related t o  the  f a c t  that  the s ta t ic  equilibrium curve falls  

monotonically once the buckling load has been attained. 

decrease t o  a minimum value of 

ac tua l  s t ructure .  

A o  , the  value of 

T . 

D '  
is the natural  def in i t ion  of the 

The unbounded behavior of the  dynamic 

This curve does not 

X and then rise, as I s  charac te r i s t ic  of an 

The dpnamic buckling loads for t he  case of step loadinn (the loading 

displayed In Figure 3(a) with T = =) were obtained i n  Reference (I). 

the  quadratic model the dynamic buckling load is re la ted  t o  the imperfection 

For 



. 
parameter 

buckling load, namely 

by an expression similar i n  form t o  tha t  fo r  the  static 

The analogous expression for the  cubic model is 

An expression re la t ing  Ag t o  A, (rather than 5 ) is obtained by - 
combining Equations (35 and (51 so t h a t  

The dynautic buckling load of the mbic  model is related t o  the static 

buckling load in a similar mauner by 

4 

Curves of A& VB. Xs/Ac for the two models are displayed i n  Figure 4. 

In this form, exp l i c i t  dependence on the magnitude of t h e  imperfection has 

been eliminated but i s  ref lected i n  

model r e su l t s  f o r  real s t ruc tures  is most eas i ly  seen. 

As/AC . Thus, the  implications of the 

For rectangular loadinga of f l n i t e  duration expressions analogous t o  (7) 

and (8)  (but considerably more complicated) re la t ing  AD , A s  , Xc and the 

addi t ional  parameter T are derived in the Appendix (see Equations (A7) and 

(A911 ; these results also involve the vibration period of t he  unloaded 

s t ruc ture  T - 2n/u . Similar analytic expressions could not be found f o r  

t r iangular  loading, and 80 it w a s  necessary f o r  t h i s  case t o  r e so r t  t o  

numerical integrat ion of the  d i f f e ren t i a l  equations (1) and (2) i n  order t o  

discern the  dynamic buckling loads 

0 

AD . In f ac t ,  as a matter of convenience, 
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m 0 8 t  of the  r e su l t s  fo r  rectangular loading were also found by t h i s  

procedure, outlined in the Appendix. 

A typical  set of results Is presented i n  Figure 5 t o  f a c i l i t a t e  

comparison between the  two models for buckling under rectanRular loadinp;. 

For the case Xs/Xc = .5 Figure 5 displays curves of XD/Xs vs. T/T for 

each model. For a given value of TIT the  cubic model buckles at a lower 
0 

h a d  t b  the quadratic. For large T/T , SD/ls approaches t?le value 

predicted by e i the r  Equation (7) or (8). 

0 

0 

Figures 6(a) and (b) essent ia l ly  summarize all the  data  for buckling 

utder rectangular loading. These f igures  display curves of +,/As VS 

Xs/Xc fo r  various values of T/T . Xn t h i s  form the data is presented i n  

the  same s p i r i t  as i n  Figure 4, i.e., the dynamic bucklfng load of the  

s t ruc ture  is re lated to  its s t a t i c  buckling load. 

Figures 6(a) and 6(b), corresponding t o  T/T - , are those presented i n  

Figure 4. 

0 

The lowest curves in 

0 

Figure8 7(a) and (b) are plotted in the  mine manner a8 Figure 5 but for 

t he  case of t r iangular  loading. 

similar t o  those of Figure 6. 

X,/X, approaches the  value given by e i t h e r  (7) or (8) for  la rge  T/T . 

The general features  of these curves are 

For t r iangular  as w e l l  as rectangular loading 

0 
1 The finite-t ime buckling impulse is I = XDT for rectangular loading, 

and I - i*XDT fo r  t r iangular  loading. The zero-time buckllng impulse for '  

the  quadratic model (given i n  Reference (1)) is 

and f o r  the  cubic model i s  readily found t o  be 
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Thus 1/1 depends only on T/T and AS/AC : and these results for each 

model, for both rectangular and triangular loading, are given in Figure 8. 
0 0 

Over the range of TIT 

triangular loading does not differ appreciably from that associated with 

plotted the buckling impulse required for 
0 

rectangular loading. 

the finite-the buckling impulse can be considerably less than the zero-the 

It is noted that for all but highly imperfec: structures 

APPLICATION OF THE SIMPLE-MODEL RESULTS 

Before attempting to discuss the application of the above results to 

real structures we can make three observations of a qualitative nature which 

follow from the simple-model results. 

for any given value of T/T there is a large variation of X,/X, over the 

possible range of X,/X, 

smaller is $/As . 
should expect even more scatter in experimental results on dynamic buckling 

than has been noted in conjunction w2th static buckling tests. 

observation is related to the first but seems worthy of separate notice. 

nearly perfect structures, that is when 

indication is that there is a possibility of dynamic buckllng loads several 

times larger than the static bucklhg load even for loads which are applied 

for times comparable with the natural vibration period of the unloaded 

structure. 

the finite-time impulse necessary for buckling can be significantly less than 

zero-time buckling impulse. 

estimate for the finite-time impulse when the structure is frlghly imperfect. 

Buckling under step loading of actual Imperfection-sensitive structures 

Firstly, it is seen in Figure 6 that 

0 

Clearly, the more imperfect the structure the 

The simple-model results strongly suggest that one 

The second 

For 

As/Xc is almost unity, the 

The third comment, already made in regard to Figure 8, is that 

The zero-time buckling impulse is only a safe 
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sfas investigated in Reference (1) by means of an extension of Koieer's 

3 gssera l  theory of elastic s t a b i l i t y  t o  include i n e r t i a l  e f fec ts .  Genersl 

equilibrium equations were obtained such tha t  the  load parameter was re lated 

t o  t h e  def lect ion of the s t ruc ture  in the  buckling mode (or modes) associated 

with lowest buckling eigenvalue of the l i nea r  buckling analysis. For same 

apecial  classes of s t ruc tures  the  general equilibrium equations reduced t o  

e i t h e r  Equations (1) or (2) and hence une or the other cf the ctimes in 

Figure 4 was d i rec t ly  applicable. 

the  cy l indr ica l  shell under axial load) it appeared that: t he  lower curve in 

Figure 4 should provide a conservative estimate of dynamic buckling under 

s tep  loading. 

For certain other s t ruc tures  !bc€rdffio 

Wben the  length of time of load application is very short  so t h a t  the 

d;mamic XUiidUng load is i a rge  compared t o  the classical buckling load (the 

buckling load of the perfect structure) it is much more d i f f i c u l t  t o  j u s t i f y  

the appl icabi l i ty  of the model results. 

v a l i d i t y  are (1) that the fnerria associated .;s"iZh the preberekling mode of 

deformation of the perfect s t ruc ture  be negl igible  and (2) tha t  the  dynamic 

buckling mode of the  s t ruc ture  be not appreciably d i f fe ren t  from the  static 

buckling mode. 

Two necessary conditions for t h e i r  

Application of the  model results t o  an "aperfectfon-sensitive s t ruc ture  

necessitate: (1) assigment  of a value t o  T f 2x/o and (2) specif icat ion 

of the  nature of the s t ruc ture  - quadratic or cubic. 
of the  s t ruc ture  is a vibrat ion mode as w e l l ,  the  f i r s t  requirement can be 

met i f  o is associated with the vibration frequency of this mode. A 

s t ruc tu re  which deforms i n  a number of buckling modes, scch as the  cy l indr tca l  

shell under axial compression, presents d i f f i c u l t i e s  i n  t h i s  reopect. 

0 

If t h e  buckling mode 

A 
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conservative choice may lead t o  identifying w v i t h  the la rges t  of the 

Sucklicg mode frequencies. 

For a given time of 108d application TIT , the lowest value of 
0 

f o r  e i t h e r  model is that corresponding t o  the l imit ing case 

Figures 6 and 7). 

X,/Xc - 0 

These l imit ing relations provide a conservative est 

(see 

mate 

of X,/X, 98. T/T . In s i tua t ions  in which the  poss ib i l i ty  of small values 

of 

be€weea. XD/Xs and TIT may he appropriate. For comenlmcei the 

variat ions of Xn/Xs with T /T for  rectangular loading fo r  the  case 

0 

X,/Xc r-ot be discounted the use of these conservative re la t ions  

0 

0 
= 0 are plot ted i n  Figure 9. For small T /T the value of X,/X, 

0 

approaches that f o r  s tep loading, i.e., 3/4 for  the  quadratlc model and 

2-li2 f o r  the cubic model. 

zero-time impulse s i tua t ion ,  and from Equations (9) and (10) the product 

I f  T /T is  large the behavior approaches the 
0 

-- AD approachee 2 / ~ ( 3 ) ~ ’ ~  f o r  the quadratic model and 3(6)1/2/8m f o r  

the  cubic model. 

those fo r  the quadratic model. 

are given 5n the  Appendix. 

As previously noted, the cubic model estimates are below 

Analytic expressions for these limiting cases 

THE LONG CYLmRIcAL SHELL mER AXIAL LOAD 

In what follows, ve have no intent ion of presenting anything but a crude 

analysis  of t he  ax ia l ly  loaded cyl indrical  she l l ,  the  imperfection-sensitivity 

of which is associated with a mult ip l ic i ty  of buckling modes. The resdts, 

nevertheless, tend t o  substant ia te  the  general appl icabi l i ty  of the  results 

for the  models. On the  basis  of these results we are led t o  suggest what 

would seem t o  be comervative buckling estimates for  the cy l indr ica l  s h e l l  

under axial compression. 

The c la s s i ca l  buckling stress of B long cyl indrical  s h e l l  under axial 
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compression having sufficiently strong end constraints is 

-1/2 E 
R Ac (3(1-v2)) 

where E is Young's modulus, v is Poisson's ratio, R is the shell radius 

and h is the shell thickness. Follaring the treatment given in Reference 

(11, we restrict consideration to only two of the many buckling modes 

associated with this critical stress. 

buckling deformation of the shell takes place in i t ,n ax inp~etr lc  %E&linG 

mode and in the non-axisymmetric mode with axial buckle wave-length twice 

that of the axisymmetric mode. 

In particular, we assume that the 

The following two equilibrium equations were obtained in Reference (1) 

on the basis of the previously mentioned extension of Koiter's general theory: 

where c = (3(1-u2))"* . Here, 5 is the 

thickness) of the shell in its axisymmetric 
1 

= m, T (11) 
1 

(12) 
2 

- mc E 
deflection (relative to the shell 

buckling mode; similarly, 5 is 
2 

the deflection in the non-axisynrmetric mode. The initial imperfections in 

the cylindrical geometry of the shell are taken to be in the form of the two 

buckling modes and are of amplitude and 
1 2 

relative to the shell 

thickness. Finally, we have let ( * I  = % 9 where the vibration 
w 

frequencies associated with the two modes (axial and circumferential inertias 

neglected) are 

The buckling behavior of the cylinder under axially applied step loading 

was studied in Reference (1) with the aid of the above two equilibrium 

equations. Curves of +,/As vs. were obtained for a variety of 
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ratios of E 
axisymmetric imperfection. The smallest value of +,/As for any given value 

of As/Ac was found to correspond to combinations of 5 and 5 such that 

the axisymmetric imperfection was zero, 5 = 0 . 
this case can be obtained analytically if the inertia tern, 'i; c1 , in 
Equation (11) is neglected. 

can be csrnbined to give 

to Z2 -- i.e., relative amount of axisylmaetric to non- 
1 

1 2 
A good approximation to 

- 
1 

1 

With this approximation, Equations (11) and (12) 

where z = 5 / t  
to the equation for the cubic model, it is strikingly similar. 

and y = 64 9c2 t2 . Although this equation is not identiczl 
2 2 2  2 

For the case of step loading the dynamic buckling stress is related to 

the static budding stress of the isperfect structure by 

This formulas was given in Reference (1) and the results are between those 

for the two models. 

No attempt has been made to make R complete stady with either Equations 

(11) and (12) or Equation (13) for dynamic buckling of the cylinder under 

rectangular loading. 

which tend to reinforce predictions based on the simple models. 

impulse necessary to buckle the cylinder is 

However, we do present two results, using Equation (13), 

The zero-time 

where T = 2 r / ~ ( ~ )  . For all values of X,/Xc , this gives values of 

10/hSTO 
given by Equations (9) and (10). 

0 

for the cylinder between the predictions for the two models as 
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Secondly, and perhaps more important from the standpoint of design, the 

relation between X,/x, and T /T for rectangular loading for the limiting 

case 

Recall that this relation is given in the Appendix and is plotted in Figure 9. 

0 

As/Ac = 0 can be shovn to be identical to that for the cubic model. 

Thus we seem to be led to the same conservative estimate for XD/As vs. 

T/T 

hS/AC 

as was obtained for the cubic model. It is well known that values of 

for cylindrical shells under axial compression are often as little 
0 

w .25; thus, design rn the basis of rho l h i r i n g  case x,/n, - 0  ley not 

be unduly conservative. The value of T is 
0 

but one is tempted to suggest an even more conservative criterion on the 

basis of the argument that w (2) really has no special significance since 

it emerged as a result of our restriction to only one non-axisyometric 

buckling mode. Among all the static buckling modes of the shell, the 

vibration period of the axisymsletric mode is the smallest. The choice of 

in conjunction with the results in Figure 9 for the cubic model provides 

what would seem to be a conservative dynamic buckling criterion. 

We end this section on a note of caution. Equations (11) and (12) as 

well as (13) are obtained under the assumption that the dynamic buckling 

modes are the same as the static buckling modes. This would seem to be a 

reasonable assumption as long as the applied stress a is not significantly 

greater than AC . However, for shorter lengths of time of load application 
and consequently larger values of applied axial stress one must not overiook 

the possibility of buckling in modes which are not characteristic of static 
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buckling. This poss ib i l i ty  has not been accounted f o r  in the  present analysis. 

APPENDIX: ANALYSIS OF SIMPLE EIODELS 

Here we present an analyt ic  procedure f o r  obtaining the buckling load of 

t h e  quadratic model under rectangular loading. 

model can be found i n  a s imilar  manner. 

Analytic Procedure (Rectangular Loadinn) 

The results fo r  t he  cubic 

m-e o n r y a + i n n  ------..- ~f + m d c  o,&librc= for the qu&rztic -,=del 5s 

- 
z + (l-A/xc)z - 6 22 = X/A, (All 

- . where 6 = a r, and ( * )  = -- 
w d t  

case of X suddenly applied for  a length of time T . One finds 

A f i r s t  i n t eg ra l  can be obtained f o r  t he  X - 

and 

2 -  2 + 22 - 5 5 .3 

for the  i n i t i a i  conditions 

value of z at t = T . 
z = k = 0 at t = 0 and where denotes the 

The dynamic buckling load AD f o r  any given value of time of load 
- 

application T has been defined as the  maximum value of A such tha t  the 

response remains bounded. 

equivalent but s l i g h t l y  d i f fe ren t  point of view. Applying a load X we look 

f o r  t he  maximum value of 

bounded. 

The analysis i s  simplified i f  we adopt an 

5 , cal l  it , such t h a t  the  response remnbs 

Figure Al depicts schematically, in t he  (2,;) phase plane, a series of 

responses f o r  several  values of T f o r  one given value of A . When the 

response is bounded, t ha t  is fo r  any 5 < TD , z a t t a i n s  a maximum zm 
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when f = 0 and t h i s  value occurs for t > T . By Equation (A3) 

For a l l  responses for which 

z = 0 when z = z and by Equation (0) 

< !fD , i' 0 when z = z ; but for T = TD , m .. 
m 

or 
1 

1 -  z = =  W) 
5 

Mow the value of z 
obtained from Equations ( A 4 )  aad (as). 

associated with the maximum bounded response can be 

This is 

1 AC 1/2 
2 -[I+--) - 1  

352 A 

- 
D 

The value of ? associated with the meutimum bounded response, TD 

found by integrating Equation (A2); this gives, finally, for the quadratic 

model, 

is 

where 

paper, 

can be expressed in terms of As/Ac (see Equation (3)). 

T = 2R/w , and, consistent with the notation in the body of the 
0 

T bas been identified with FD and A with A,, . Note that 5 

The relation of AD/As t o  T/T for the limiting case As/AC 0 may 

For small AS/AC 
0 

be useful as a conservative buckling criterion. 

and 
A X  - z % - - -  8 S S  

D 3 ac A~ 
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In the limit as 

change of the variable of integration, 
As/Xc approaches zero (A71 becomes, with an appropriate 

1 
4 2 

D T 
0 

Cubic Results (Rectangular Loading) 

Analogous expressions for the cubic model, based on Equation (2), are 

found in a manner s imi lar  tn +_ha+ Ip_p~ribe(! fsr the q.sdratie ~ ~ d a l .  

dynamic buckling load AD is related to the Imperfection parameter 'f (and 

thus, by Equation (4), to X,.JAc ) and T by 

'%e 

- 

1 

1 % 1/2 where here z = (1 + - -) - 1 . The conservative buckling estimate 
D 2: 'D 

for the cubic model cor;espondiag to the limiting case A ~ / A ~  = 0 and plotted 

in Figure 9 is 

Numerical Procedure 

Since expressions similar to those given for rectangular loading could 

not be found for triangular loading, a straightforward numerical procedure 

based on integration of the differential equation (Al) was derived. 

procedure was actually used for most of the rectangular loading calculations 

as well as for triangular loading and spot checks on its accuracy were made 

by means of the analytic results for rectangular loading. 

histories of X the values of z and i at the time t = T were calculated. 

This 

For prescribed 
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U s h g  these values it was possible to determine, again numerically, whether 

the subsequent response was bounded or unbounded. 

calculations with different choices for 

critical history for a given value of 

Thus, repeated 

1 

T . 
were necessary to determine the 
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